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Abstract

SOLID glass or ceramic hulls provide the maximum buoy-
ancy and internal useful volume for underwater vehicles.
This material displays low creep characteristics and with-
stands external pressure cycling and mild underwater dy-
namic pressures. Scratches on the exterior surfaces do not
decrease appreciably the compressive and elastic strength
of such vessels when exposed to either static or cycling
pressure. Connectors have been devised that enable glass
cylinders to be joined into a monolithic structure that is
resistant to both pressure and flexure.
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Solid Glass and Ceramic External-Pressure Vessels

Introduction

IN THE quest for construction materials with high compressive-strength-to-weight ratios,
glass and ceramics show greatpromise, Although these materials have been used for several thou-~
sand years, their application has bee.. limited largelyto items such as jewelry, bottles, jars, win-
dows, lenses, mirrors, prisms, and drinking glasses. Only very recently has their use been ex-
tended to laboratory ware, oven-proof kitchenware, and structural brick. Now, because of the
demands of aerospace and hydrospace, the astounding mechanical properties of glass and ceramics
are being utilized,

These materials are characterized primarily by their hardness and brittleness - only a few
precious stones excel them in hardness; and very few materials, if any, exceed them in brit-
tleness. But beyond this superficial characterization of their mechanical properties are many
unique properties (1,2).*

The properties that make glass and ceramics valuable for structural uses are: compres-
sive strength in excess of 300,000 psi (see Table I); tensile strength in excess of 100,000 psi (for
finely drawn fibers); densities ranging between 0.08 and 0.15 lb per cu in.; moduli of elasticity
varying from 8 x 108 to 50x 105; linear elastic behavior; impermeability to water; heat conductiv~
ity of 7 to 600 Btu/h/sq ft/deg F/in.; thermal expansion rates of 6 x 10~7 to 75 x 107 per deg F;
and working temperaturesinexcess of 1000 deg F. The properties that make the design of glass and
ceramic structures difficult are:low tensile strengths of 10,000 to 50,000 psi and flexural strengths
of 15,000 to 75,000 psi for cross sections larger than a fiber; decrease of tensile and flexural
strength with the duration of loading; extreme sensitivity to imperfections on surfaces under ten-
sion; and low resistance to mechanical shock.

When competing with metals and plastics for application in sti'ctures that are primarily
loaded in tension or in bending, the glass and ceramic structural members (except for extremely
fine fibers) are at a disadvantage because of their low tensile and flexural strengths, which decrease
with time under load. However, in structures that are subjected primarily to compressive loads
{such as external-pressure vessels), glass and ceramics show a favorable comparion (Fig. 1).%*

As a logical first step in this research program, a literature search was made of the vari-
ous ways in which glass has been used in external-pressure vessels (in forms other than solid).
These uses are described in Section A of the Appendix.

Only recently has serious thought - H, A, Perry (3) at the U. S. Naval Ordnance Labora-
tory and C. L. Key at the Ordnance Research Laboratory - been given to the use of solid glass
construction for external-pressure vessels. The brittleness of the material and the absence of any
need to penetrate abyssal depths of the oceans made its use questionable; however, recent interest
in the mysteries of the oceandepths and the resultant need for high-strength, low-weight, external-
pressure vessels have brought attention to solid glass and ceramics. Before any design of solid
glass or ceramic vessels could be contemplated, apilot experimental program had to be instituted
to answer questions concerning the design of external-pressure vessels:

1. Are the elastic stability formulas for metallic vessels under external hydrostatic pres-
sure applicable to glass and ceramic shells?

* Numbers in parentheses refer to References on last numbered page of this report.
**]llustrations will be found at the end of the report, following the colored divider.
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TABLE 1

COMPRESSIVE-STRENGTH-TO-WEIGHT RATIO
OF SEVERAL GLASS AND CERAMIC MATERIALS

Ratio
Material (psi/lb/cu in.)
Solid glasses and ceramics 1,500,000 to 4,000,000
Fiber-glass-and-epoxy laminates 600,000 to 2,000,000
Fiber-glass~ or flake-glass-and-epoxy laminates 400,500 to 900,000
Rod-glass~and-cast-aluminum composites 400,000 to 800,500
Sphere-glass~and-epoxy composites 200,500 to 700,000
Sphere-glass-and-cast-aluminum composites 200,000 to 300,500

2. Do stress raisers (such as the sharp fillets at the roots of stiffeners), when located only
in areas where compressive stresses occur, cause a measurable decrease in the implosion strength
of the vessel?

3. Is there any measurable creep of the material when the vessel is subjected to high com-
pressive biaxial stress for short periods of time ?

4. How resistant are glass and ceramic vessels to underwater hydrodynamic shock gener-
ated by explosives detonated near the vessel?

5. What decrease in the implosion pressure of the vessel can be expected if it is subjected
to external-pressure cycles that induce fatigue stresses in the material ?

6. What is the actual biaxial compressive strength of some representative glass and ce-
ramics, such as Pyroceram 9606, Pyrex, and 99 per cent alumina oxide ceramic ?

7. Can pressure hulls for large underwater vehicles be fabricated from small structural
components without recourse to welding or bonding and yet retain the elastic stability and strength
inherent to monolithic shells ?

8. How can brittle glass and ceramic shells be prevented from fracturing as a result of
impacts ?

For at least tentative answers to these questions, the author designed glass, ceramic, and
plastic vessels for implosion and impact testing. The design, fabrication, and testing of these ves-
sels is described in this report. Capitalletters are used to identify the test models, and numerical
subscripts are used to differentiate between models of identical design and material,

The Test Models
STABILITY THEORY

To determine the applicability of stability theories to glass and ceramic pressure vessels
and to determine their creep, fatigue strength, and resistance to underwater shock, a series of rib-
stiffened Pyroceram and alumina oxide cylinders were designed. The conventional design theories
of R, von Mises and Kendrick were followed to design cylinders with an 8«~in. outer diameter for
critical hydrostatic pressures above 10,000 psi. Since present fabrication methods had to be uti-
lized, the ratio of wall thickness to diameter had to be kept above 0,015 for Pyroceram cylinders
and 0,035 for aluminaoxide cylinders. The four Pyroceram cylinders were designed with both three
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stiffening ribs (Models I; and Ip) with 14,000-psi critical pressure (Figs. 2 and 3), and with five
stiffening ribs (Models J; and J2) with 10,000-psi critical pressure (Figs. 4 and 5). The three
alumina cylinders, Models K}, K2, and K3 (Figs. 6 and 7), had two stiffening ribs and a 10,000-psi
critical pressure, Except for the difference in length between the Pyroceram and alumina oxide
cylinders, the majordifference was thatthe alumina shells had small fillet radii and the Pyroceram
shells had large radii.

UNDERWATER SHOCK

A series of high-strength aluminum cylinders were made to provide a yardstick with which
to compare the underwater-shock resistance of glass and ceramics. The dimensions of the hign-
strength aluminum cylinders, Models Lj and L. (Figs. 8 and 9), with a 2400-psi critical design
pressure were identical to alumina oxide Model K; whereas the aluminum cylinders, Models M;
and Mg, with a 4500-psi critical design pressure (Fig. 10) were identical (dimensionally) to Pyro-
ceram cylinder Model I.

COMPRESSIVE STRENGTH

Hollow spheres (Fig. 11) were used to determine the ultimate biaxial compressive strength
of glass and ceramics, These spheres consisted of two hemispheres bonded together with epoxy
resin, The ratio of wall thickness to diameter was such that failure resulting from elastic insta-
bility could pot occur at hydrostatic pressures below 100,000 psi - the operating pressure of the
hydrostatic testing tank. The hollow spheres were selected for the determination of the compressive
strength of the material because only in the spherical shell is it possible to obtain uniform dis-
tribution of pure, biaxial compressive stress.

SURFACE COATINGS

To evaluate various surface coatings for protecting glass or ceramics from shock, 4-in.-OD
Pyrex and alumina ceramic tubes were first coated and then fractured using a simple pendulum as
an impact generator. Pendulum weights of 1, 5, and 9 lb were used. The kinetic energy or velocity
of the pendulum provided a comparison of the effectiveness of coatings. Some shock tests were also
performed on coated and uncoated Pyroceram hemispheres (Fig. 12) by subjecting them to impacts
with a 1/2-1b ball. A detailed description of these tests is presented in ref. 4.

STRUCTURAL SEAMS

The experimental study of structural seams for spherical and cylindrical pressure vessels
was limited to models made of acrylic resinbecause of its availability., Beveled, longitudinal staves
were used in the construction of Model JC cylinders (Fig. 13a), and spherical polygons were used
in the construction of Model JS spheres (Fig. 14b). The yardstick of comparison was the static col-
lapse pressure, under hydrostatic loading, of the monolithic Models MC (Fig. 13b) and MS
(Fig. 14a).

JOINTS

An investigation was conducted to determine whether the joints used to connect metallic cyl-
inders were adequate for glass and ceramic shells that, although possessing very high compressive
strength, have very low tensile and shear strengths. The external Marman clamp, the internal
Marman clamp, and the interrupted-screw breech-type lock were evaluated. The external Marman
clamp and the breech-type lock were tested on glass Models XXX and XXX, (Figs. 15 through 21);
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the internal Marman clamp was tested on acrylic resin Model IMC (Figs. 22 and 23). The three
types of joint fasteners were evaluated by their ability to withstand external hydrostatic pressure
and bending moments applied across the two halves of the models.

The Tests
STATIC PPESSURE

Static-pressure tests of the glass and ceramic models were performed at the Southwest Re-
search Institute and the Naval Ordnance Laboratory. The spherical models were placed in an oil-
filled tank, the tank was sealed, and the hydrostatic pressure was raised until the model imploded.
The open ends of the cylindrical models were sealed with two flat aluminum plates connected by
tie rods; thus, the ends of the shells were free to contract during the application of external pres-
sure. No gaskets were used between the end plates and the shells; sealing was accomplished by a
layer of heavy grease. The hydrostatic pressure was increased at a rate of approximately 1000
psi per min, At designated intervals, the pressure was held constant during the reading of strains
on the automatic Gilmore strain recorder.

To determine creep characteristics, the pressure was raised slowly, until a given external
pressure was reached. This pressure was maintainedfor a prolonged period, and strain was meas-
ured at regular intervals,

FATIGUE

For the fatigue test, the pressure was cycled rapidly between a pressure of 100 psi and a
pressure equal to 80, 85, or 90 per cent of the nominal static critical pressure. The pressure cycles
were continued for either a fixed number of cycles or until implosion occurred. No strain measure-
ments were made during the fatigue tests.

FLEXURE

For the flexture test of joints, the joined sections were subjected to four-point loading and
kept under load for several minutes. For application of forces, nylon ribs were employed. The
hydrostatic-pressure tests of the joints were conducted in the same manner as the implosion tests;
however no strains were recorded and, since all models were equipped with integral hemispherical
ends, no end plates were required.

UNDERWATER SHOCK

The underwater-shock tests were of two types: low-static-pressure shock tests and high-
static-pressure shock tests. Both types of tests were performed in tanks completely filled with
water. For the low-static-pressure shock tests, static pressure was provided by a 5-ft head of
water. For the high-static-pressure tests, the hydrostatic pressure was 50 per cent of the static
critical pressure for each model. Shock loads were produced by Pentolite explosive mounted at
varying distances below the center of the shell. The distance between the explosive and the shell
was decreased until the brittle vessels were fractured or until large-scale plastic deflection oc~-

.curred in the ductile models. Forthe underwater-shock tests, water was used for the pressurizing

medium; all other tests were conductedinoil, In all tests, resistance strain gages, Type BLH-AFX-
7, were mounted on the inside of the shells.
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Evaluation of Test Results

On the basis of the test results, whichare listed in Section B of the Appendix, it can be con-
cluded that:

1, The elastic-shell-stability and elastic-strain-distribution formulas for metallic external-
pressure vessels are also applicable to solid Pyroceram and alumina oxide vessels.

2. Stress raisers such as sharpradii at the root of stiffeners and deep scratches on surfaces,
if located in areas where only resultant compressive stresses occur, cause no significant decrease
in the stability or compressive strength of the solid Pyroceram or alumina oxide ceramic vessels
when subjected to external hydrostatic pressure.

3. The fatigue strength of solid Pyroceram shellsis very high; no failure occurred when the
material was cycled over a range of compressive stresses extending from approximately 1000 to
180,000 psi for 3000 cycles. However, the areas stressed to a compressive fatigue stress of 180,000
psi for 3000 cycles showed some signs of deterioration: flaking of the external shell surface at mid-
bays (Figs. 24 and 25); and flaking of the internal shell surface at the stiffeners (Figs. 26 and 27),

4, The resistance of the Pyroceram and aluminaoxide ceramic vessels to underwater shock
waves, when tested at an ambientpressure of 3 to 5 psi, was several orders of magnitude less than
that of 7075-T6 aluminum shells with identical dimensions (Table II); and alumina ceramic was
found to be less shock resistant than Pyroceram. The resistance of Pyroceram to underwater shock
waves seemed to increase with an increase in the ambient pressure, whereas that of the 7075-T6
aluminum markedly decreased (Table II). The limited number of alumina ceramic models precluded
the possibility of determining whether their shock resistance increases with an increase in ambient
pressure; however, since alumina ceramic is much like Pyroceram, it can be postulated with con-
siderable certainty that the shock resistance of alumina ceramic also increases with increasing
ambient hydrostatic pressure. To summarize: when comparing the resistance to underwater shock
of 7075-T6 aluminum external-pressure vessels to thatofidentical Pyroceram vessels on the basis
of dynamic pressure required to collapse them (Tablell) at the ocean surface, Pyroceram vessels
are considerably less resistant tounderwater shock waves than aluminum vessels; but, as the depth
increases, the Pyroceram vessels become more shock resistant, whereas the aluminum vessels be~
come less shock resistant.

5. Over 30-min periods, the test models have shown very little creep when subjected to hy-
drostatic pressure great enough to produce a compressive stress of 150,000 psi,

6. At implosion, the maximum compressive stresses in the spherical models were 364,000
psi for Pyroceram, 368,000 psi for alumina oxide ceramic, and 152,000 psi for Pyrex. These

TABLE I1

EFFECT OF IMMERSION DEPTH ON THE DYNAMIC-PRESSURE
RESISTANCE OF PYROCERAM AND ALUMINUM MODELS

Immersion LCrynamic Extent
Depth Pressure of
Material Model (ft) (psi) Failure
I; 0 11,000 Complete
Pyroceram
Ip 13,000 22,500 Complete
Mp 0 31,000 11 per cent damage
Aluminum

My 5000 31,000 45 per cent damage




stresses do not indicate, necessarily, the maximum compressive strength of the material because
failure could have been initiated by imperfect matching of joint surfaces between individual hemi-
spheres.

7. The elastic stability and compressive strength of segmented cylinders and spherical shells
assembled with taped rather than bonded seams (Figs. 13a and i4b) are identical to the elastic sta-
bility and compressive strength of monolithic vessels of identical dimensions and material (5). On
the basis of tests performed on acrylic resin models, the diarneter of glass or ceramic pressure
vessels need notbe limited by the current production facilities for the casting of monolithic vessels.
They may be assembled from relatively small segments, as decribed above, and still retain their
elastic stability and compressive strength under external pressure if the ground-joint surfaces
match perfectly or if proper gaskets are used.

8. There appear to be two promising approaches to increase the resistance of brittle pres-
sure vessels to point-impact loading. One approach relies on protective coatings that will absorb
some of the kinetic energy of the impacting body and, at the same time, spread the contact pressure
over a greater surface area of the vessel. The other approach applies, by chemical or mechanical
means, compressive stressesin the surface of the vessel that exceed those produced by the tensile-
stress component produced by point impact. The protective coatings of neoprene, glass-fiber and
epoxy laminates, and aluminum have been found to give appreciable protection to glass and ceramic
cylinders against point impact of 10-lb objects onlyif the coatings are more than 1-in. thick. Coat-
ings of even 1/8-in. thickness are effective against 1/2-1b objects (Fig. 12),

Generally speaking, it appears that, for underwater vehicles with limited outer and inner
diameters, the best protection is afforded by mechanical or chemical means that put the outer shell
surface under compressionorimpartgreater tensile strength. This has been accomplished by rein-
forcing glass and ceramics wiih_metallic fibers; by use of glass heat treatments; by applications of
the Chemcor process to glass; and by the shrinkage of metallic cylinders on the glass and ceramic
shells, When composite rather than monolithic glass or ceramic vessels are used, the gasket ma-
terial between individual segments may serve as fracture-propagation barriers (4).

9. Cylinders of brittle materials such as glass or ceramic can be successfully joined to with-
stand external hydrostatic pressure and bending moments if a specially designed joint is employed
that takes the low tensile strength of brittle materials into consideration. A breech-type joint (Figs.
18 and 19) meets this requirement.

Summary

Glass and ceramics have already found some application in the construction of underwater
vehicles, either as fibers, flakes, or spheresinan epoxy or aluminum matrix. It is anticipated that,
in the near future, glass and ceramics also will be employed as tubes and rods in an aluminum
matrix or as the sole load-carrying members of rib-stiffened or sandwich-type cylinders, with or
without the added reinforcement of metallic fibers. The selection of particular construction tech=~
niques must be governed by the desired structural and volumetric efficiencies of the proposed
vessel, the cost of fabrication, and the depth of operation., There is no one best fabrication tech-
nique for glass or ceramic vessels; but, if structural efficiency and volumetric efficiency are the
most desirable attributes of a proposed deep-submergence hull, then solid glass and ceramics are
the best materials.

The compressive-strength-to-weight ratio of these materials is unexcelled and, combined
with their intrinsic high moduli of elasticity, they appear to be obvious choices for transparent
(or opaque) load-carrying underwater domes or as the main structural members of oceanographic
probes and vehicles. o
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Appendix

A. Uses of Glass for Pressure-Vessel Construction
FIBER-GLASS-AND-EPOXY LAMINATES

LLASS was first used in external-pressure vessels as fine fibers of very high tensile
strength imbedded in an epoxy matrix. Fiber-glass-and-epoxy laminates were being used quite
extensively in the aerospace industry as construction material for internal-pressure containers,
and the application of the same construction techniques to external-pressure vessels seemed very
natural. Although compressive strengths as high as 120,000 psi were obtained in vessels of lami~
nated fiber glass and epoxy resin, this constructionproved to be less reliable and more costly than
expected. The average compressive strength was only 80,000 psi (6) and, to obtain even this com-
pressive strength, very elaborate equipment was necessary to wind a continuous glass fiber at a
constant, predetermined tension and in the desired direction while applying a resin coating to the
fiber. In the experimental testing programs, the external-pressure vessels made of fiber-glass~
and-epoxy laminates displayed several shortcomings: low fatigue strength, considerable perma-
ent creep when exposed to 50 or 60 per cent of critical pressure, some deterioration of the matrix
strength after immersion in sea water under pressure for long periods of time, and a small but
noticeable absorption of water, Still, in structural members of vessels where only modest com-
pressive stresses and short-duration, high tensile stresses are encountered, the fiber-glass-and-
epoxy laminates are very desirable,

FLAKE-GLASS-AND-EPOXY LAMINATES

To simplify the fabrication of glass-reinforced epoxy shells, to decrease the permeability
to water, and to decrease the notch sensitivity of the laminates, a new laminate was developed (7)
in which, instead of glass fibers, glass flakes of 10 to 35 mesh and approximately 24 thickness
were used. This material results in an average compressive strength of 50,000 psi, a tensile
strength of 20,000 psi, a flexural strength of 30,000 psi, and a modulus of elasticity of 5 or 6 mil-
lion psi. Although weaker than fiber-glass-and-epoxy laminates, the notch sensitivity and the
permeability to water were much lower than those of fiber-glass laminates. It is thought that the
lower permeability to water is due to the much longer and more tortuous path that the water must
traverse from the outside to the inside surface of the vessel. The low notch sensitivity of flake~
glass laminates, on the other hand, has been postulated to be due to inherent stress raisers within
the flake laminates that already have a stress-concentration factor of at least 1.5. Perhaps the most
promising application of glass flakes is in flake-fiber-epoxylaminations, which have slightly lower
strength than fiber-glass-and-epoxy laminates but considerably lower water permeability, lower
notch sensitivity at surface discontinuities, and much better machinability of external surfaces.
For better quality control and higher mechanical properties, some cylinders have been made in
which the glass flakes were replaced by a 2- to 10~mil-thick, epoxy-coated, continuous glass tape
wound in a helix on a cylindrical mandrel.

SPHERE-GLASS-AND-EPOXY COMPOSITES

Because of the increased compressive strength, fiber-glass- and flake-glass-epoxy laminates
have been used to decrease the weight of underwater vessels since a smaller amount of structural




material is used than would be the case if epoxy resin alone were to be utilized in the fabrication.
To achieve the same goal, the over-alldensity was reduced by adding minute, hollow glass spheres
(2-x wall thickness) to the epoxy (8). By selecting the size of glass spheres (30 to 3004 in diam-
eter) and using them in proper proportion with epoxy resins, it was possible to achieve composite
material densities of 22 to 45 lb per cu ft with corresponding compressive strengths of approxi:
mately 2500 to 20,000 psi. Although these compressive strengths are low, the material is lighter
than water; therefore, the wall of a pressure vessel can be made the desired thickness without
decreasing appreciably the buoyancy of the submerged structure. This approach to pressure-vessel
design is advantageous as long as no limit is placed on the external diameter of the vessel, and
protection from water permeability is provided by an external impervious layer. The material,
being epoxy, will also creep some under prolonged exposure to high external pressure.

The addition of glass spheres toepoxy reduces the tensile strength of the composite material
to about 3000 psi; however, this disadvantage canbe overcome by adding glass fibers, If the fibers
are placed on the external and internal surfaces of the vessel, they will effectively carry all of the
tensile stresses generated by bending moments that otherwise would tend to fracture the low-
strength sphere-glass-and-epoxy composite.

This material will find widespread application as a low-density potting compound for the
internal components of unmanned, underwater oceanographic probes. The large bulk and the fair
compressive strength of such a potting compound filling all the voids in the vehicle will make it
sufficiently rigid to eliminate the need for a shell structure to carry all the compressive stresses
generated by external hydrostatic pressure.

Attempts are also being made to utilize the hollow glass spheres with a metallic instead
of an epoxy matrix (9). A metallic matrix should eliminate - or at least decrease considerably -
the creep, strength deterioration, and water permeability. The fatigue strength of the structure
will also increase substantially. The metallic matrix thatis most compatible with the glass spheres
is cast aluminum, So far, only flatplateshave been cast of sphere glass and aluminum composites,
but no great difficulties exist for applying the same construction techniques to cylindrical pressure
vessels. A compressive strength of 22,000 psi and a tensile strength of 2700 psi have been obtained
with sphere-glass-and-aluminum composites with a density of 0.058 lb per cu in,

TUBE-GLASS AND ROD~GLASS STIFFENERS FOR CASTINGS

Some attempts have also been made toreinforce metals with glass fibers. So far, the results
have not been too encouraging; the entrapment of gas bubbles between fibers and the nonwettability
of glass surfaces present major obstructions to achieving uniform, nonpermeable castings with
improved compressive strength-to-weight ratios. However, experiments by the author have shown
that if, instead of many fine glass fibersin an aluminum casting, a smaller number of 1/4- to 1-in,
heat-resistant glass rods or tubes is substituted, then the compressive strength of cast aluminum
pressure vessels can be increased without any increase in weight. To attain the increase in com-
pressive strength, however, the glass rods and tubes must be located selectively, depending upon
the magnitude of expected compressive stresses; and sufficient space must be provided for molten
metal to flow freely between the rods during the casting operation. The analogy of steel-reinforced
concrete may be usedhere exceptthat, in concrete, the steel rods are located in areas of maximum
tensile stress whereas, in metallic castings, the glass rods and tubes are located in regions of
maximum compressive stress., When the proper heat-resistant glass was used, no fractures in the
glass rods and tubes occurred. The combination of glass reinforcements with a metallic matrix
gives tl : glass rods and tubes the much-needed protection against point impacts. The metallic
matrix, besides providing impermeable barriers to water, permits ready incorporation of tapped
holes for internal fastenings in the vessel.




B. Experimental Data
RESULTS OF STATIC-PRESSURE TESTS

Model 1) - Three-ribbed Pyroceram cylinder (Fig. 2); design critical pressure, 14,000 psi. This
model was tested to 10,000 psi without implosion; measured strains shown in Figs. 28, 29,
and 30; no creep detected after 30 min at 10,000 psi,

Model J] - Five-ribbed Pyroceram cylinder (Fig. 4); design critical pressure, 10,000 psi. This
model failed at 10,000 psi; measured strains shown in Figs, 31 through 40,

Model Jo - After being subjected to a fatigue test (see below) the model was scratched to a depth
of 1/64 in. as shown in Fig. 41 and subjected to a static-pressure test. Failure occurred at
11,500 psi; no strains were recorded.

Model Kj; - Two-ribbed alumina ceramic cylinder (Fig. 6); design critical pressure, 10,000 psi.
This model failed at 12,700 psi; measured strains shown in Figs. 42 through 47.

Model Ky - Prior to test, this model was scratched to a depth of 1/64 in. as shown in Fig. 48. Fail~
ure occurred at 14,200 psi; measured strains are shown in Figs. 49 through 53.

Model Lj - Two-ribbed high-strength aluminum cylinder (Fig. 8); design critical pressure, 2400
psi. Failure occurred at 2400 psi; measured strains are shown in Figs. 54 through 58, Strain
gage location is the same as that for Model K (see Fig. 42).

Model Lg - After being damaged severely (Fig. 59) in underwater shock testing, failure occurred
at 1950 psi (Fig. 60).

Model M; - Three-ribbed high-strength aluminum cylinder (Fig. 10); design critical pressure,
4500 psi. After being severely damaged in underwater shock testing, failure occurred at
4000 psi(Fig. 61).

Model Mgy - After being severely damaged (Fig. 62) in underwater shock testing, failure occurred
at 2500 psi (Fig. 63).

Model A - The sphere (Fig. 11) of 99 per cent alumina oxide ceramic, with a design critical pres-
sure of 365,000 psi, imploded at a hydrostatic pressure of 55,000 psi.

Model Py - The sphere (Fig. 11) of Pyrex glass, with a design critical pressure of 217,000 psi,
imploded at a hydrostatic pressure of 35,000 psi.

Model Pm - The sphere (Fig. 11) of 9606 Pyroceram, with a critical design pressure of 203,000 psi,
imploded at a hydrostatic pressure of 72,000 psi.

Model XXX - The 9606 Pyroceram model (Fig. 15), with a design critical pressure of 15,000 psi,
imploded at a hydrostatic pressure of 14,800 psi.

Model XXX2 - The 9606 Pyroceram model (Fig. 18), with a design critical pressure of 15,000 psi
and a breech-type lock, was subjected topressuresup to 16,000 psi. Implosion did not occur.

Model JC - The segmented acrylic resincylinder, shownin Fig. 13a, with a design critical pressure
of 760 psi, imploded at a hydrostatic pressure of 780 psi.

Model MC - The monolithic acrylic resin cylinder, shown in Fig. 13b, with a design critical pres-
sure of 760 psi, imploded at a hydrostatic pressure of 780 psi.




Model JS - The acrylic resin sphere assembled fromunbonded spherical polygons (Fig. 14b), with a
design critical pressure of 1150 psi, imploded at a hydrostatic pressure of 1140 psi.

Model MS - The acrylic resin sphere assembled from bonded spherical polygons (Fig. 14a), with a
design critical pressure of 1150 psi, imploded at a hydrostatic pressure of 1120 psi.

RESULTS OF FATIGUE TEST

Model Jp - The five-ribbed Pyroceram cylinder (Fig. 4), with a design critical pressure of 10,000
psi, was subjected to 1000 cycles of 100~ to 8000-psi pressure, 1000 cycles of 100- to 8500~
psi pressure, and 1000 cycles of 100- to 9000-psi pressure, Some of the shell material was
observed to flake off at the completion of the test (Figs. 24 through 27); however, no implosion
occurred.

RESULTS OF UNDERWATER SHOCK TESTS

Model I; - Three-ribbed Pyroceram cylinder (Fig. 2); design critical pressure, 14,000 psi. At a
static pressure of 2 psi, this model was imploded by a 7-gm Pentolite charge detonated 5.75
in, below the model after withstanding an identical charge set off at a distance of 10,75 in,

Model I - At a static pressure of 5500 psi, this cylinder was imploded by an 8.3-gm Pentolite
charge detonated 3 in. below the model after withstanding identical charges set off at distances
of 10, 8, and 5 in.

Model M1 - Three-ribbed high-strength aluminum cylinder (Fig. 10); design critical pressure, 4500
psi. At a static pressure of 2 psi, this model was severely damaged by a 16-gm Pentolite
charge detonated 3 in, below the model after withstanding an identical charge set off at dis-
tances of 8 and 5 in. The permanent deformation of the model occurred solely between the
stiffeners, and the magnitude of the indentation was 1/8 in,

Model Mg - At a static pressure of 2250 psi, this cylinder was severely damaged (Fig. 62) by a
16-gm Pentolite charge detonated 3 in. below the model after withstanding identical charges
set off at distances of 8 and 5 in. The permanent deformation or indentation of the model
was 0.11 in. on the stiffener and 0.15 in. midway between the stiffeners.

Model K3 - Two-ribbed alumina ceramic cylinder (Fig. 6); design critical pressure, 10,000 psi. At
a static pressure of 2 psi, this model was imploded (Fig. 64) by a 9.6-gm Pentolite charge
detonated 8 in. below the model.

Model 1.2 - Two-ribbed high-strength aluminum cylinders (Fig. 8); design critical pressure, 2400
psi. At a static pressure of 2 psi, this model was severely damaged (Fig. 58) by a 16-gm
Pentolite charge detonated 3 in. below the model after withstanding 7-gm Pentolite charges
set off at distances of 24, 14 1/2, 91/2, 53/4, and 3 in.

RESULTS OF FLEXURE TEST
Model IMC - This acrylic resin shell, equipped with the internal Marman clamp (Fig. 23), was sub-

jected to a tensile load of 50,000 lb without failure. Subsequently, the model failed when sub-
jected to a bending moment of 30,000 lb-in. applied by the four-point loading method.

10
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Fig. 9 - Two-Ribbed High-Strength Aluminum Cylinder, Model L
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Fig. 11 - Dimensions of Hollow Spheres Used to Determine Biaxial Compressive Strength,
Models A, Px' and Pm
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Fig. 16 - Components of Pyroceram Model XXX and External Marman Clamp




Fig. 17 - Assembled Pyroceram Model XXX
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Fig. 22 - Details of Acrylic Resin Model IMC with Internal Marman Clamp
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Fig. 24 - Appearance of Outside Surface of Fatigued Cylinder, Model Jg




Fig. 25 - Close Up of External Surface of Fatigued Cylinder, Model Jy




Fig. 26 - Appearance of Inside Surface of Fatigued Cylinder, Model Jg




Fig. 27 - Close Up of Internal Surface of Fatigued Cylinder, Model Jg
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Fig. 28 - Location of Strain Gages inside Model 1;
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Fig. 29 ~ Strains and Stresses at Gages 1 and 2 of Model )
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Fig. 30 ~ Strains and Stresses at Gages 3 and 4 of Moc. 1 I
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Fig. 32 - Strains and Stresses at Gages 34 and 35 of Model J;
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Fig. 33 - Strains at Gage 37 of Model J;
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Fig. 34 - Strains and Stresses at Gages 38 and 40 of Model J;
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Fig. 41 - Model Jg Showing Marks Scratched on Surface
after Fatigue Test and before Implosion
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Fig. 42 - Location of Strain Gages inside Models K; and Kg
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Fig, 43 - Strains and Stresses at Gages 1 and 2 of Model K;
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Fig. 44 - Strains and Stresses at Gages 3 and 4 of Model Kj




(emsmwy  pusemmm  peeseews  guss

PRESSURE (1000 psi)

1 I i
0 100 200 300

STRESS, o (1000 psi)

L 1 1 1 1 1

O 1000 2000 3000 4000 5000

STRAIN, € (u in./in.)

Fig. 45 - Strains and Stresses at Gages 5 and 6 of Model K;
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Fig. 46 - Strains and Stresses at Gages 7 and 8 of Model K;
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Fig. 47 - Strains and Stresses at Gages 9 and 10 of Model K,




Fig. 48 - Location of Scratches on Model K5 before Implosion
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Fig. 49 - Strains and Stresses at Gages 1 and 2 of Model Ky
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Fig. 50 - Strains and Stresses at Gages 3 and 4 of Model Ky
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Fig. 51 - Strains and Stresses at Gages 5 and 6 of Model Ko
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Fig. 52 - Strains and Stresses at Gages 7 and 8 of Model Ky
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Fig. 58 - Strains and Stresses at Gages 9 and 10 of Model L;




Fig. 59 - Permanent Deformation of Model Lo Resulting from Shock Test
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Fig. 60 - Failure of Model Ly Resulting from Hydrostatic-Pressure Test




Fig. 61 - Failure of Model Mj (Model Had Previously Been Severely Damaged by Shock Test)
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Fig. 82 |- Permanent Deformation of Model Mg Resultin
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from Shock Test




Fig. 63 - Failure of Model Mg Resulting from Hydrostatic-Pressure Test
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